Benchmarking an acoustic coupling theory for elastic shells of arbitrary shape
نویسندگان
چکیده
Coupling coefficients for thin shells of arbitrary curvature based upon a ray-theoretic approach devised by the authors are benchmarked against exact and high-frequency results for canonical geometries, i.e., the spherical nd infinite circular cylindrical shells. The well-known high-frequency approximations of the coupling coefficients are found to describe their magnitude accurately but not the phase for midfrequencies (between ring and coincidence) when compared with results obtained by applying the Sommerfeld-Watson transformation to the exact modal series. The coupling coefficients characterize both the magnitude and the phase accurately and simply in terms of fundamental physical parameters. ̧ 1995 Acoustical Society of America.
منابع مشابه
Wave Propagation Approach to Fluid Filled Submerged Visco-Elastic Finite Cylindrical Shells
Multi-layer orthotropic finite cylindrical shells with a viscoelastic core in contact with fluids are gaining increasing importance in engineering. Vibrational control of these structures is essential at higher modes. In this study, an extended version of the wave propagation approach using first-order shear deformation theory of shell motion is employed to examine the free vibration of damped ...
متن کاملThird Order Formulation for Vibrating Non-Homogeneous Cylindrical Shells in Elastic Medium
Third order shear deformation theory of cylindrical shells is employed to investigate the vibration characteristics of non-homogeneous cylindrical shells surrounded by an elastic medium. The kinematic relations are obtained using the strain-displacement relations of Donnell shell theory. The shell properties are considered to be dependent on both position and thermal environment. A suitable fun...
متن کاملFree Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory
In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in con...
متن کاملA Geometric Theory of Nonlinear Morphoelastic Shells
Many thin three-dimensional elastic bodies can be reduced to elastic shells: two-dimensional elastic bodies whose reference shape is not necessarily flat. More generally, morphoelastic shells are elastic shells that can remodel and grow in time. These idealized objects are suitable models for many physical, engineering, and biological systems. Here, we formulate a general geometric theory of no...
متن کاملAnalytical Solution for a Two-Layer Transversely Isotropic Half-Space Affected by an Arbitrary Shape Dynamic Surface Load
The dynamic response of a transversely isotropic, linearly elastic layer bonded to the surface of a half-space of a different transversely isotropic material under arbitrary shape surface loads is considered. With the help of displacements and stresses Green’s functions, an analytical formulation is presented for the determination of the displacements and stresses at any point in both surface l...
متن کامل